
Selfish Scheduling with Setup Times

Laurent Gourvès1, Jérôme Monnot1, and Orestis A. Telelis2

1. LAMSADE, CNRS FRE 3234, Université de Paris-Dauphine, 75775 Paris, France
{laurent.gourves, monnot}@lamsade.dauphine.fr

2. PNA1, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
telelis@cwi.nl

Abstract. We study multiprocessor scheduling games with setup times
on identical machines. Given a set of scheduling policies (coordination
mechanism) on the machines, each out of n players chooses a machine to
assign his owned job to, so as to minimize his individual completion time.
Each job has a processing length and is of a certain type. Same-type jobs
incur a setup overhead to the machine they are assigned to. We study
the Price of Anarchy with respect to the makespan of stable assignments,
that are pure Nash or strong equilibria for the underlying strategic game.
We study in detail the performance of a well established preemptive
scheduling mechanism. In an effort to improve over its performance, we
introduce a class of mechanisms with certain properties, for which we
examine existence of pure Nash and strong equilibria. We identify their
performance limitations, and analyze an optimum mechanism out of this
class. Finally, we point out several interesting open problems.

1 Introduction

We study multiprocessor job scheduling games with setup times, where each out
of n players assigns his owned job for execution to one out of m machines. Jobs
are of certain types. On any machine, jobs of a given type may be executed only
after a type-dependent preprocessing (performed once for all same-type jobs)
called setup. Each machine schedules its assigned jobs according to a scheduling
policy (algorithm). Given the deployed scheduling policies, players assign their
jobs selfishly, to minimize their individual completion times. We examine the
impact of selfish behavior on the overall (social) cost of stable assignments and
how this can be alleviated, by deployment of appropriate scheduling policies on
the machines. Stable assignments are pure Nash equilibria (PNE) of an under-
lying strategic game, or strong equilibria (SE); the latter extend PNE by being
resilient to coalitional deviations [1]. The overall cost of stable assignments is
measured by the latest completion time among all players, known as makespan.
System performance degradation due to selfish behavior is measured by the
Price of Anarchy, the worst-case ratio of the makespan of the most expensive
equilibrium, relative to the optimum achievable makespan [2].

Our work is motivated by concerns in performance optimization of large-
scale distributed systems (computational grids, P2P file sharing systems etc.).

In these systems autonomous entities (end-users, communities, enterprises) com-
pete strategically for resources (distributed storage, processing power, band-
width) to increase their individual profit. Setup overheads in these systems may
well dominate the net processing load of tasks assigned by users; consider e.g.
loading application environments, booting operating systems, establishing QoS
for network connections. Scheduling with setup times also provides for model-
ing another very natural situation; the case where many autonomous users may
benefit from the output of an identical process. In this case users may only care
for the output of the setup (which takes non-negligible time) but their jobs may
have virtually zero load for the machine. As an example, consider the setup cor-
responding to computation and writing of output to a remote file which users
simply read. Then the machine may also have to deal obliviously of users’ pres-
ence; only one of them may actually declare his presence by requesting execution
of the setup, whereas the rest simply benefit from the request.

The vast number of resources and users in modern distributed environments
renders centralized deployment of global resource management policies expensive
and inefficient; a central authority may only specify local operational rules per
resource, to coordinate users towards globally efficient system utilization. The
deployment of such local rules was formalized in [3], under the notion of coor-
dination mechanisms and demonstrated for scheduling and network congestion
games. In scheduling, local policies are scheduling algorithms deployed on the
machines; their set is referred to as a coordination mechanism. The policies may
be preemptive or non-preemptive, deterministic or randomized; a policy decides
the order of execution of assigned jobs on each machine and may also introduce
delays in a systematic manner. A coordination mechanism induces a strategic
game, by affecting the players’ completion times. The purpose of designing coor-
dination mechanisms is to induce a strategic game that has stable assignments
(in our case, PNE or SE outcomes) with low PoA, that can be found efficiently.

A series of works concerned the study of strategic games induced by well
established and novel scheduling policies applied on basic scheduling settings [2,
4, 3, 5–10]. The PoA of strong equilibria (SPoA) was first studied for selfish
scheduling games in [11] under the preemptive mechanism introduced in [2]. We
give a brief account of these works below, in section 2. Our focus is on strongly
local scheduling policies under which, the completion time of a job j on a machine
i is solely dependent on the parameters (with respect to i) of jobs assigned to
i. It is called simply local if the completion time of j depends on parameters of
jobs assigned to i across all machines. We investigate in detail the performance
of strongly local mechanisms that can handle the challenges outlined above.

Contribution We analyze the performance of deterministic strongly local co-
ordination mechanisms for selfish scheduling with setup times, on identical ma-
chines. First we give a detailed account of the performance of a well established
preemptive scheduling mechanism, referred to as Makespan (section 4), which was
introduced in [2] and studied subsequently for several scheduling game models [7,
11, 12]. We show that the game induced by Makespan always has SE, by general-
izing a proof of [11]. If k denotes the number of different types of jobs, the PoA

2

of Makespan is shown to be m when m ≤ k and k+1− ǫ (for some 1 > ǫ ≥ 1/m)
when m > k. We show that SPoA = 3/2 for two machines and 2 for m ≥ 3. In
section 5 we study a class of deterministic strongly local mechanisms, referred to
as type ordering mechanisms, that can schedule jobs obliviously of the number
of players with zero processing lengths. We prove that any deterministic type
ordering mechanism induces a strategic game that has PNE, for any number of
machines, and SE for 2 machines. We prove a lower bound of m+1

2 for the PoA of
type ordering mechanisms, and argue that other intuitive solutions are no more
powerful than type ordering mechanisms in our setting. In section 6 we analyze
the performance of an optimal type ordering mechanism. It achieves a PoA of
m+1

2 , when m ≤ k, and k+3
2 − ǫ (ǫ = k

m , when m is even and ǫ = k−1
m−1 otherwise)

when m > k. We conclude with challenging open problems in section 7.

2 Related Work

Performance of coordination mechanisms with respect to Nash equilibria in
multi-processor scheduling games has been the subject of several recent works [2,
4, 3, 7, 6, 5, 11, 12, 8, 9]. The preemptive mechanism known as Makespanwas intro-
duced and studied in [2] in the scheduling setting of uniformly related machines;
each machine i has speed vi and each job j has processing length ℓj, so that the
time needed by i to execute j is ℓj/vi. The Makespan mechanism schedules jobs
in parallel on each machine, so that they all have the same completion time.
Makespan was shown to have PoA = Θ(log m

log log m) on uniformly related machines

in [4, 5] (see also [13]). In case of identical machines, all speeds are equal and
the PoA of PNE is known to be 2m

m+1 by the works of [14, 15]. This holds also
for the (S)PoA of strong equilibria, which were shown to exist in any machine
model [11]. [12] studied the SPoA as a function of the number of different speeds.

Scheduling games in unrelated machines were additionally studied in [7–9].
In the unrelated machines model a job’s processing time depends solely on the
machine it is assigned to. In [7], bounds on the PoA of well known deterministic
and randomized scheduling policies were studied for unrelated machines. A wide
class of non-preemptive strongly local scheduling policies was shown in [8] to have
PoA ≥ m

2 . This class contains well known policies such as “longest” and “short-
est job first”. The authors designed a simply local mechanism that induces PNE
with PoA = O(log2 m). A local mechanism with PNE having PoA = O(log m)
was given recently in [9]. Deterministic and randomized non-clairvoyant mecha-
nisms for scheduling on unrelated machines were studied in [10].

Preemptive multi-processor scheduling with setup times [16] (see also [17]
[SS6]) requires a minimum makespan preemptive schedule, such that the setup
is executed by a machine between execution of two job portions of different type.
The best known approximation algorithm has a performance guarantee of 4

3 [18]
(see [19] for a previous 3

2 factor). For equal setup times a PTAS is given in [18]
and an FPTAS for 2 machines in [20]. See [21] for a slightly different version.

3

3 Definitions

We consider m identical machines, indexed by i ∈ M = {1, . . . , m} and n jobs
j ∈ J = {1, . . . n}, each owned by a self-interested player. We use interchange-
ably the terms job and player. Every job j has a type tj ∈ U , where U is the
universe of all possible types 1. The subset of U corresponding to the set of jobs
J is denoted by T = {tj|j ∈ J } and define k = |T |. We refer to any specific
type by θ. Each job j ∈ J and each type θ ∈ U are respectively associated to
processing length ℓj ≥ 0 and setup time w(θ) ≥ 0. If w(θ) = 0, then ℓj > 0
for all j with tj = θ. Otherwise, we allow ℓj = 0. Agent j ∈ J chooses a strat-
egy sj ∈ M (a machine to assign his job to). A strategy profile (assignment) is
denoted by s = (s1, . . . , sn); s−j refers to s, without the strategy of j.

The cost of a player j under assignment s is cj(s), the completion time
of his job. cj(s) depends on the scheduling policy deployed on machine sj . The
completion time of machine i ∈ M under s is Ci(s) = maxj:sj=i cj(s). The social
cost function is the makespan C(s) = maxi Ci(s) = maxj cj(s). We use Li(s) =
∑

j:sj=i ℓj for the total job processing load on machine i under assignment s,

excluding setup times. Li,θ(s) =
∑

tj=θ,sj=i ℓj is the total processing length of

type θ assigned on machine i. Ti(s) denotes the subset of types that have jobs
on machine i under s. A scheduling policy is a scheduling algorithm. The set of
scheduling policies deployed on all machines is a coordination mechanism.

Definition 1. [1, 11] A strategy profile s is a strong equilibrium if for every
subset of players J ⊆ J and every assignment s′ = (s−J , s′J), where s′j 6= sj for
all j ∈ J , there is at least one player j0 ∈ J with cj0(s) ≤ cj0(s

′).

The makespan of a socially optimum assignment s∗ can be lower bounded as:

(a) mC(s∗) ≥
X

θ∈T

w(θ) +
X

j∈J

ℓj (1)

(b) C(s∗) ≥ w(tj) + ℓj for any j ∈ J

(c) (k − 1)C(s∗) ≥
X

ξ∈T \{θ}

w(ξ) for any θ ∈ T

The only restriction that we impose on the scheduling policies is that the setup
of any type θ on any machine i is executed before execution of type θ jobs on i.

4 On the Makespan Mechanism

We study an adaptation of the preemptive mechanism introduced in [2] and
referred to as Makespan [7, 10]. In any assignment s under Makespan it is cj(s) =
Csj

(s) for every j ∈ J ; completion time of j equals completion time of the
machine that j is assigned to. Makespan schedules jobs on a machine in parallel by
usage of time multiplexing. They are broken into small pieces that are executed
in a round-robin fashion; each job is assigned a fraction of the machine’s time
proportionally to its processing length.

1 E.g. the set of application environments installed on each machine.

4

Theorem 1. Strong Equilibria exist in the scheduling game with setup times,
under the Makespan mechanism.

The proof of this result can be found in Appendix A. It is a generalization
of the proof of [11]. Their proof depends crucially on all jobs having non-zero
processing length (see Lemma A.1 in the full version [11]). To overcome this, we
used a more detailed vector potential function.

Theorem 2. The PoA of the Makespan mechanism for the scheduling game with
setup times is m when m ≤ k, at most k + 1 − k/m when m > k and at least
k+1
1+ǫ for m ≥ 3k − 2 and ǫ = 2k−1

m−k+1 .

Proof. Case m ≤ k: The most expensive PNE s has makespan C(s) ≤∑θ w(θ)+
∑

j ℓj (all jobs on one machine). By (1a), it is PoA ≤ m. For the lower bound
take k = m types of jobs, each type θ having w(θ) = 1 and containing m jobs
of zero processing length. A job of each type is assigned to each machine in s .
Then C(s) = m and s is clearly a PNE. In the social optimum s∗ each type is
assigned to a dedicated machine, thus C(s∗) = 1.

Case m > k: Assume that for the most expensive PNE s it is C(s) = C1(s).
Let x be a job of type tx = θ executed on machine 1. x cannot decrease its cost
cx(s) = C1(s) by switching to any machine i 6= 1. Then C1(s) ≤ Ci(s) + ℓx if
θ ∈ Ti(s) or C1(s) ≤ Ci(s) + w(θ) + ℓx otherwise. We sum up the inequalities
over all machines, assuming that θ does not appear on α machines, and add
C1(s) to both sides to obtain mC1(s) ≤ ∑m

i=1 Ci(s) + αw(θ) + (m − 1)ℓx ≤
m
∑

ξ∈T w(ξ) + (m − 1)ℓx +
∑

j∈J ℓj. Divide by m and rewrite it as:

C1(s) ≤
m − 1

m

(

∑

ξ∈T \{θ}

w(ξ) + w(θ) + ℓx

)

+
1

m

(

∑

ξ∈T

w(ξ) +
∑

j∈J

ℓj

)

Using (1a,b,c), C(s) ≤ m−1
m ((k − 1)C(s∗) + C(s∗))+C(s∗) = (k+1− k

m)C(s∗).

For the lower bound take k types, m ≥ 3k−2, and let w(1) = 0 and w(θ) = 1
for θ ∈ {2, . . . , k}. There are k + 1 jobs of type 1 and length 1 and m−1

ǫ jobs

of type 1 and length ǫ = 2k−1
m−k+1 . Types θ ∈ {2, . . . , k} have m − 1 jobs each,

of processing length 0. A PNE s is as follows. k + 1 jobs of type 1 and length
1 are assigned to machine 1. One job from each type θ ≥ 2 is assigned to each
machine i = 2, . . . , m. 1

ǫ jobs of type 1 and length ǫ are also assigned to each
machine i ≥ 2. Thus Ci(S) = k for i ≥ 2 and C1(s) = k+1. No job may decrease
its completion time (equal to the makespan of the machine it is assigned to) by
switching machine. In the optimum assignment s∗ assign two jobs of type 1 - with
lengths 1 and ǫ - to each machine i = 1 . . . k + 1. Every machine i = k + 2 . . . 2k,
has m − 1 jobs of type i − k, each of length 0. Every machine i = 2k + 1 . . .m,
has 1/ǫ + 1 jobs of type 1, of length ǫ. The makespan of s∗ is 1 + ǫ. ⊓⊔

Theorem 3. The Price of Anarchy of strong equilibria under Makespan for the
scheduling game with setup times is 2 for m ≥ 3, and 3

2 for m = 2 machines.

5

Proof. We give the proof for the case m ≥ 3. The reader is referred to Appendix
B for the case m = 2. Let s be a SE, s∗ the socially optimum assignment, and
C(s) = C1(s). If C1(s) ≤ C(s∗) we get SPoA = 1. If C1(s) > C(s∗), there is
machine i 6= 1 with Ci(s) ≤ C(s∗), because otherwise s would not be a SE; all
jobs would reduce their completion time by switching from s to s∗. For any job
x with sx = 1, it is cx(s) ≤ cx(s−x, i). Thus C1(s) = cx(s) ≤ Ci(s) + w(tx) + ℓx.
Thus C(s) = cx(s) ≤ 2C(s∗), because Ci(s) ≤ C(s∗) and (1b). For the lower
bound, take 3 machines and 4 jobs, with t1 = t2 = θ1 and t3 = t4 = θ2. Set
w(θ1) = ǫ, ℓ1 = ℓ2 = 1 and w(θ2) = 1, ℓ3 = ℓ4 = ǫ. An assignment where
jobs 1, 2 play machine 1 and jobs 3, 4 play machines 2, 3 respectively is a strong
equilibrium of makespan 2 + ǫ. In the social optimum jobs 3, 4 are assigned to
the same machine and 1 and 2 on dedicated machines; the makespan becomes
then 1 + 2ǫ. Thus SPoA ≥ 2+ǫ

1+2ǫ → 2, as ǫ → 0. ⊓⊔

5 Type Ordering Mechanisms

We describe a class of (deterministic) type ordering mechanisms, for batch schedul-
ing of same-type jobs. Each machine i groups together jobs of the same type θ,
into a batch of type θ. A type batch is executed by the machine as a whole; the
setup is executed first, followed by preemptive execution of all jobs in the batch,
in a Makespan fashion. Jobs within the same batch have equal completion times
and are scheduled preemptively in parallel. Type batches are executed serially
by each machine.

Policies in type ordering mechanisms satisfy a version of the property of
Independence of Irrelevant Alternatives (IIA) [8]. Under the IIA property, for
any set of jobs Ji ⊆ J assigned to machine i ∈ M and for any pair of types
θ, θ′ ∈ U with jobs in Ji if the θ-type batch has smaller completion time than the
θ′-type batch, then the θ batch has a smaller completion time than the θ′ batch
in any set Ji ∪ {j}, j ∈ J \ Ji. Presence of j does not affect the relative order
of execution of θ and θ′ batches. The IIA property was used in [8] for proving a
lower bound on the PoA of a class of job ordering mechanisms in the context of
unrelated machines scheduling. Type ordering policies do not introduce delays in
the execution of batches, but only decide their relative order of their execution,
based on a batch’s type index and setup time. They do not use the number of jobs
within each batch; otherwise the IIA property may not be satisfied. Job lengths
are used only for Makespan-wise scheduling within batches. Hence type ordering
mechanisms function obliviously of “hidden” players with zero job lengths.

We prove next existence of PNE for any number of machines, and SE for
m = 2 under type ordering mechanisms. An algorithm for finding PNE follows.
Let o(i) be the ordering of types on machine i, and O = {o(i)|i ∈ M} be the set
of all orderings of the mechanism. By ≺o denote the precedence relation of types,
prescribed by o ∈ O. Let Mo be the set of machines that schedule according to
o ∈ O. Initialize o ∈ O arbitrarily, and repeat until all jobs are assigned:

1. Find the earliest type θ according to ≺o, with at least one unassigned job.
2. Let j be the largest length unassigned job with tj = θ.

6

3. Pick i ∈ M minimizing completion time of j 2 (break ties in favor of i ∈ Mo).
4. If i ∈ Mo set sj = i else switch ordering o to o(i).

Theorem 4. The scheduling game with setup times has pure Nash equilibria,
under type ordering mechanisms.

Proof. The algorithm terminates in polynomial time; once a job is assigned, it is
never considered again and within every O(m + n) iterations some job is always
assigned. For any type θ, denote by ŝθ the partial assignment up to the time
after the last job of type θ has been assigned. We show by contradiction that no
job j has incentive to deviate under an assignment s returned by the algorithm.

Assume that j does have incentive to deviate from sj , and let s′ be the
resulting assignment after deviation of j. At the time corresponding to the partial
assignment ŝtj

, there is no type θ 6= tj and machine i such that θ ∈ Ti(ŝtj
) and

tj ≺o(i) θ. If it was the case, the first job of type θ 6= tj assigned to i would
have been chosen before jobs of type tj were exhausted, which contradicts step
1. of the algorithm. Thus, batches of type tj are scheduled - under ŝtj

- last
on all machines with tj ∈ Ti(ŝtj

). Furthermore, if j wishes to deviate to a
machine i 6= sj , then cj(s) = cj(ŝtj

) > Ci(ŝtj
) + ℓj = cj(s

′), if tj ∈ Ti(ŝtj
), and

cj(s) = cj(ŝtj
) > Ci(ŝtj

) + w(tj) + ℓj = cj(s
′), if tj 6∈ Ti(ŝtj

). Let j′ be the last
job of type tj assigned to machine sj (it may be j′ = j). Because ℓj′ ≤ ℓj , it is
also cj′(ŝtj

) = cj(ŝtj
) > Ci(ŝtj

)+ ℓj′ or cj′(ŝtj
) = cj(ŝtj

) > Ci(ŝtj
)+w(tj′)+ ℓj′

accordingly. By the time j′ was assigned, the completion time of i was at most
Ci(ŝtj

). This contradicts step 3. of the algorithm with respect to j′. ⊓⊔
Theorem 5. For the scheduling game with setup times under type ordering
mechanisms, any pure Nash equilibrium is strong, when m = 2.

Proof. Assume that s is PNE, but not SE, and let J ⊆ J be a coalition of jobs
that have incentive to deviate jointly. Define J1 = {j ∈ J |sj = 1}, J2 = {j ∈
J |sj = 2}; since s is PNE, J1, J2 6= ∅. Let θi be the earliest type according to
≺o(i) with jobs in Ji and denote by J ′

i type θi jobs in Ji. Take two jobs j1 ∈ J ′
1,

j2 ∈ J ′
2, and let s′ be the resulting assignment after deviation.

CASE 1: θ1 6= θ2. Since s is a PNE, it must be θ1 ≺o(1) θ2 and θ2 ≺o(2) θ1

because, if e.g. θ2 ≺o(1) θ1, j2 would have incentive to deviate unilaterally to
machine 1, since it wishes to deviate jointly with coalition J . Hence cj2(s

′) ≥
cj1(s) −

∑

j∈J′

1

ℓj +
∑

j∈J′

2

ℓj + w(θ2) if J ′
1 does not contain the entire batch of

type θ1 and cj2(s
′) ≥ cj1(s)−

∑

j∈J′

1

ℓj −w(θ1)+
∑

j∈J′

2

ℓj +w(θ2) otherwise. So,

in the worst case, we get cj2(s
′) ≥ cj1(s)−

∑

j∈J′

1

ℓj −w(θ1)+
∑

j∈J′

2

ℓj +w(θ2).

Similarly, cj1(s
′) ≥ cj2(s) − ∑j∈J′

2

ℓj − w(θ2) +
∑

j∈J′

1

ℓj + w(θ1). Summing

up these two inequalities, we obtain cj2(s
′) + cj1(s

′) ≥ cj2(s) + cj1(s) which is
impossible since it must be cj2(s

′) < cj2(s) and cj1(s
′) < cj1(s).

CASE 2: θ1 = θ2. Then, in the worst case we obtain cj2(s
′) = cj1(s)−

∑

j∈J′

1

ℓj+
∑

j∈J′

2

ℓj and cj1(s
′) = cj2(s) −

∑

j∈J′

2

ℓj +
∑

j∈J′

1

ℓj. The rest of the proof is

similar to the previous case. ⊓⊔
2 j incurs processing load w(tj) + ℓj if a tj-type job is not already assigned to i.

7

We give in Appendix B an example of PNE that is not SE for a type ordering
mechanism, when m ≥ 3. The following result identifies performance limitations
of type ordering mechanisms, due to lack of a priori knowledge of T ⊆ U .

Theorem 6. The Price of Anarchy of the scheduling game with setup times is
m+1

2 for every deterministic type ordering mechanism.

Proof. For any deterministic type ordering mechanism, assume there is a subset
T ⊆ U of k = 2m − 1 types, say T = {1, · · · , 2m − 1}, such that: all types
of T are scheduled in order of ascending index in a machines and in order of
descending index in d = m − a machines. Then, there is a family of instances
with PoA ≥ m+1

2 . Next we prove existence of T . Set w(θ) = 1 for all θ ∈ U .
When a = m or d = m, take an instance of m zero length jobs for each type
θ ∈ {1, · · · , m}. Placing one job of each type on every machine yields a PNE with
makespan m. An assignment of makespan 1 has all same-type jobs assigned to
a dedicated machine, thus PoA ≥ m. When a ≥ 1 and d ≥ 1, the instance has:

– a jobs of zero length for each type θ ∈ {1, · · · , m − 1}
– d jobs of zero length for each type θ ∈ {m + 1, · · · , 2m− 1}
– m − 1 jobs of of zero length and type m
– one job of length 1 and type m
– no jobs for θ ∈ U \ T

Assign one job of type θ ∈ {1, · · · , m− 1} on each of the a ascending type index
machines, and one job of type θ ∈ {m+1, · · · , 2m−1} on each of the d descending
type index machines. Put one job of type m on every machine. This is a PNE
of makespan m + 1. Placing all jobs of type θ ∈ {i, 2m− i} on machine i yields
makespan 2. Thus it is PoA ≥ m+1

2 .
We show existence of T for sufficiently large universe U . We use the fact that

any sequence of n different real numbers has a monotone (not necessarily con-
tiguous) subsequence of

√
n terms (a corollary of Theorem 4.4, page 39 in [22]).

By renaming types in U we can assume w.l.o.g. that U is ordered monotonically
(index-wise) on machine 1, and set T1 = U . Then, there is T2 ⊆ T1 such that
|T2| ≥

√

|T1| and all the types of T2 are ordered monotonically according to
index, on machines 1 and 2. After m− 1 applications of the corollary, we obtain
a set Tm ⊆ Tm−1 ⊆ · · · ⊆ T1 = U with |Tm| ≥ |U|21−m

and all its types are
scheduled monotonically to their index on every machine. We set T = Tm, and
take a universe U of types with |U| = (2m − 1)2

m−1

, to ensure existence of T
with k = |T | = 2m − 1 types. ⊓⊔
Let us note that “longest” or “shortest batch first” policies are no more powerful
than type ordering mechanisms; they reduce to them for zero length jobs.

6 An Optimal Type Ordering Mechanism

We analyze the PoA of a type ordering mechanism termed AD (short for Ascending-
Descending), that schedules type batches by ascending type index on half of the
machines, and by descending type index on the rest. If m is odd one of the
policies in applied to one machine more. First we prove the following lemma.

8

Lemma 1. Let T ′ ⊆ T include types with non-zero setup times. If two jobs
of the same type in T ′ play an ascending and a descending index machine re-
spectively under the AD mechanism, their type batches are scheduled last on the
respective machines.

Proof. We show the result by contradiction. Let jobs x1, x2 with tx1
= tx2

= θ
be assigned on the ascending and descending machines 1, 2 respectively. Assume
that a job y, ty = θ′ 6= θ, is scheduled on 1 after type θ. Because s is a PNE, job
x2 does not decrease its completion time if it moves to machine 1; because y is
scheduled after x1 on 1:

cx1
(s) ≥ cx2

(s) − ℓx2
, and cy(s) ≥ cx1

(s) + w(θ′) + ℓy (2)

If y switches to processor M2 then it will be scheduled before type θ, thus its
completion time will be at most cx2

(s) − w(θ) − ℓx2
+ w(θ′) + ℓy if θ′ 6∈ T2(s)

(and at most cx2
(s) − w(θ) − ℓx2

+ ℓy otherwise). In the worst case, we obtain:

cy(s) ≤ cx2
(s) − w(θ) − ℓx2

+ w(θ′) + ℓy (3)

By (2) and (3), cy(s) ≤ cy(s)−w(θ) < cy(s), a contradiction, because θ ∈ T ′. ⊓⊔

The next result identifies upper bounds on the PoA of AD. A proposition that
follows proves tightness, through lower bounds on the Price of Stability, the
ratio of the least expensive PNE makespan over the optimum makespan. We
take k ≥ 2; AD is identical to Makespan for k = 1.

Theorem 7. The Price of Anarchy of the AD mechanism for the scheduling game
with setup times is at most m+1

2 when m ≤ k and at most k+3
2 − ǫ (ǫ = k

m when

m is even and ǫ = k−1
m−1 otherwise), when m > k.

Proof. Let s be the most expensive PNE assignment and C(s) = C1(s) =
maxi Ci(s). Let θ0 be the type scheduled last on machine 1 and x a job with
tx = θ0. Define T ′

C ⊆ T ′ to be types with jobs assigned to both ascending and
descending machines under s. Let T ′

A ⊆ T ′ \T ′
C and T ′

D ⊆ T ′ \T ′
C contain types

exclusively assigned to ascending and descending machines respectively. Notice
that at most one type θ1 ∈ T ′

C may appear in at least m
2 + 1 machines (when

m even) and m+1
2 machines (when m odd); thus any type in T ′

C \ {θ1} appears
on at most m

2 machines (actually, m−1
2 machines when m is odd). We study two

cases depending on whether θ1 exists and whether it coincides with θ0 or not.

CASE 1: θ0 = θ1 or θ1 does not exist. Job x will not decrease its completion
time by moving to machine p for p = 2, . . . , m. If Mθ0

(s) are the indices of
machines which contain type θ0, then:

∀p ∈ Mθ0
(s), cx(s) ≤ Cp(s) + ℓx and ∀p /∈ Mθ0

(s), cx(s) ≤ Cp(s) + w(θ0) + ℓx (4)

To obtain the upper bound we sum up (4) for p ∈ {2, . . . , m}, add C1(s) in
the left and right hand part, and take

∑

θ 6∈T ′ w(θ) = 0. We will do this analysis
below, collectively for cases 1 and 2.

9

CASE 2: θ0 6= θ1 and θ1 exists. Assume θ0 < θ1 and let R contain the indices
of ascending machines which have at least one job of type θ1 assigned (if θ0 > θ1,
we consider the indices of descending machines). Let R be the indices of these
machines and R′ ⊆ R be the indices of machines that are also assigned type
θ0 jobs (note that θ0 /∈ T ′

C if R′ 6= ∅). If job x moves to a machine with index
in p ∈ R′, the completion time of x becomes at most Cp(s) − w(θ1) + ℓx and
Cp(s) − w(θ1) + w(θ0) + ℓx if p ∈ R′′ = R \ R′. Since s is a PNE:

∀p ∈ R′, cx(s) ≤ Cp(s)−w(θ1)+ℓx, ∀p ∈ R′′, cx(s) ≤ Cp(s)−w(θ1)+w(θ0)+ℓx (5)

We will sum up inequalities (4) or (5) for p ∈ {2, . . . , m} depending on whether
p ∈ R or not. As in case 1 we add C1(s) to left and right hand parts and
consider

∑

θ/∈T ′ w(θ) = 0. Before summing note that when m is even, each type
in T ′

A ∪ T ′
D has jobs assigned to at most r

2 machines, for r = m. When m is odd
assume w.l.o.g. that there are m+1

2 descending machines. We ignore one of them
- different than M1 - in the summation (we assume m ≥ 3; otherwise m = 1 and
C(s) = C(s∗)). Then, in case 2, type θ1 appears at most r

2 times, r = m − 1, in
the remaining m − 1 machines.

rC1(s) ≤
r

2





∑

θ∈T ′

A
∪T ′

D
\{θ0}

w(θ) +
∑

θ∈T ′

C
\{θ0}

w(θ)



+ rw(θ0) +
∑

j∈J

ℓj + (r − 1)ℓx

=
r

2





∑

θ∈T

w(θ) +
∑

j∈J

ℓj



+
r

2
w(θ0) + (r − 1)ℓx − r − 2

2

∑

j∈J

ℓj (6)

≤ r

2





∑

θ∈T

w(θ) +
∑

j∈J

ℓj



+
r

2
(w(θ0) + ℓx) since

∑

j∈J ℓj ≥ ℓx (7)

When k ≥ m we use (1a,b) with (7) to obtain C1(s) ≤ m+1
2 OPT . When k < m

we rewrite (6) as:

C(s) ≤ 1

r





∑

θ∈T

w(θ) +
∑

j∈J

ℓj



+(
1

2
− 1

r
)

(

∑

θ∈T

w(θ) + ℓx

)

+
1

2
(w(θ0) + ℓx) (8)

Using (1b,c), we get kC(s∗) ≥∑θ∈T w(θ)+ℓx and replacing r = m and r = m−1
for even and odd m respectively, yields the stated bounds with respect to k. ⊓⊔

Proposition 1. The Price of Stability of the scheduling game with setup times
under the AD mechanism is m+1

2 when k > m and k+3
2 − ǫ (ǫ = k

m when m is

even and ǫ = k−1
m−1 otherwise) when k ≤ m.

Proof. For k > m we use the same example as in the proof of theorem 6, but
replace the zero length jobs with very small ǫ > 0 length. For AD the described
assignment for a, d ≥ 1 applies, and it is a PNE with makespan m+1+(m−1)ǫ;
the socially optimum makespan has length 2+mǫ. In any PNE, all jobs of types
1 and 2m − 1 will play exactly the strategies specified in the described PNE

10

assignment, because a lower completion time is not achievable for them in any
assignment. Inductively, jobs of types i and 2m − i, i = 2 . . .m − 1, follow the
same practice, given the strategies of jobs of types i − 1, 2m − i + 1. For the
jobs of type m, the strategies described in the aforementioned assignment are
best possible, given the strategies of all other jobs. Therefore the described PNE
is unique, hence PoS → m+1

2 for ǫ → 0. The same uniqueness argument holds
when k ≤ m, for the instances given below.

k ≥ 2 even. There are m = 2k machines, k ascending Ai and k descending Di

for i = 1, . . . , k. For each type θ 6= k
2 + 1, w(θ) = 1 and there are k jobs of

this type with length ε. Finally, there are k + 1 jobs of type k
2 + 1 with length

1 and w(1 + k/2) = 0. Consider the state s where A1 has a job of each type
1, . . . , k

2 + 1, machine Ai, i = 2, . . . , k, has one job of each type 1, . . . , k
2 , and

finally descending machine Di, i = 1, . . . , k, has a job of each type k
2 +1, . . . , k. s

is a PNE and C(s) = k
2 +1+ k

2 ε. A socially optimum assignment s∗ is defined as

follows. For each type θ 6= k
2 + 1, a dedicated machine schedules all jobs of type

θ. Thus, k − 1 machines are busy and k + 1 are free. Each job of type k
2 + 1 is

scheduled on a dedicated machine out of the k+1 free ones. Then C(s∗) = 1+kε.
Since m = 2k, when ε tends to 0, we get: PoA = k

2 + 1 = k+3
2 − k

m .

k ≥ 3 odd. Take m = k machines: k+1
2 of ascending index and k−1

2 of descending
index. Each type has setup time 1 and the length of each job is ǫ. There are
k+1
2 jobs for each of the first k−1

2 types, assigned to a distinct ascending index

machine each. There are k−1
2 jobs for each of the last k−1

2 types, assigned to a

distinct descending index machine each. The middle type (with index k+1
2) has

k jobs, each assigned to a distinct machine. This assignment is a PNE and has
makespan k+1

2 (1 + ǫ). In the socially optimum assignment we place all jobs of

every type on a dedicated machine and achieve makespan 1+kǫ (type k+1
2). The

ratio tends to k+1
2 = k+3

2 − k−1
m−1 as ǫ → 0. ⊓⊔

7 Open Problems

Notice that the universe of types U is required to be huge in the proof of Theo-
rem 6 (double exponential). This size is non-realistic for most interesting prac-
tical settings. Is there a lower size of U that also yields PoA ≥ m+1

2 for type
ordering mechanisms? For example, the proof of Theorem 6 requires that |U| ≥ 9
when m = 2, although |U| ≥ 3 is enough. The performance of type ordering
mechanisms is not fully characterized by theorem 6; there may be certain sizes
of |U| below which these mechanisms may perform better. Another interesting
issue to be examined, is when type ordering mechanisms are a priori aware of
the subset of types T that corresponds to players J . What is the impact of such
an a priori knowledge to the achievable PoA by type ordering mechanisms? Fi-
nally, we have not considered in this paper any simply local mechanisms, or more
challenging machine environments (uniformly related or unrelated machines). All
these constitute very interesting aspects for future developments on the subject.

11

References

1. Aumann, R.J.: Acceptable points in games of perfect information. Pacific Journal
of Mathematics 10 (1960) 381–417

2. Koutsoupias, E., Papadimitriou, C.H.: Worst-case Equilibria. In: Proc. STACS,
Springer LNCS 1543. (1999) 404–413

3. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination Mechanisms. In:
Proc. ICALP, Springer LNCS 3142. (2004) 345–357

4. Koutsoupias, E., Mavronicolas, M., Spirakis, P.G.: Approximate Equilibria and
Ball Fusion. Theory of Computing Systems 36(6) (2003) 683–693

5. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Transac-
tions on Algorithms 3(1) (2007)

6. Christodoulou, G., Gourvès, L., Pascual, F.: Scheduling Selfish Tasks: About the
Performance of Truthful Algorithms. In: Proc. COCOON, Springer LNCS 4598.
(2007) 187–197

7. Immorlica, N., Li, L., Mirrokni, V.S., Schulz, A.: Coordination Mechanisms for
Selfish Scheduling. In: Proc. WINE, Springer LNCS 3828. (2005) 55–69

8. Azar, Y., Jain, K., Mirrokni, V.S.: (almost) optimal coordination mechanisms for
unrelated machine scheduling. In: Proc. ACM-SIAM SODA. (2008) 323–332

9. Caragiannis, I.: Efficient coordination mechanisms for unrelated machine schedul-
ing. In: Proc. AMC-SIAM SODA. (2009) 815–824

10. Durr, C., Nguyen, T.K.: Non-clairvoyant Scheduling Games. In: Proc. SAGT (to
appear), Springer LNCS. (2009)

11. Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games and
Economic Behavior (to appear) (2009) 189–198

12. Epstein, L., van Stee, R.: The Price of Anarchy on Uniformly Related Machines
Revisited. In: Proc. SAGT, Springer LNCS 4997. (2008) 46–57

13. Vöcking, B.: Selfish Load Balancing (Chapter 20). In: Algorithmic Game Theory.
Cambridge University Press (2007) 517–542

14. Finn, G., Horowitz, E.: A linear time approximation algorithm for multiprocessor
scheduling. BIT 19 (1979) 312–320

15. Schuurman, P., Vredeveld, T.: Performance guarantees of local search for multi-
processor scheduling. In: Proc. IPCO, Springer LNCS 2081. (2001) 370–382

16. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer (1999)

17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H.Freeman & Co Ltd (1979)

18. Schuurman, P., Wöginger, G.J.: Preemptive scheduling with job-dependent setup
times. In: Proc. ACM-SIAM SODA. (1999) 759–767

19. Chen, B.: A better heuristic for preemptive parallel machine scheduling with batch
setup times. SIAM Journal on Computing 22 (1993) 1303–1318

20. Wöginger, G.J., Yu, Z.: A heuristic for preemptive scheduling with set-up times.
Computing 49(2) (1992) 151–158

21. Chen, B., Ye, Y., Zhang, J.: Lot-sizing scheduling with batch setup times. Journal
of Scheduling 9(3) (2006) 299–310

22. Jukna, S.: Extremal Combinatorics with Applications in Computer Science.
Springer-Verlag (2001)

12

Appendix A: Proof of Theorem 1

We suppose that J = {1, . . . , n}. To every state s we associate a permutation
πs of the set of players such that πs(j) ≤ πs(j

′) if and only if cj(s) ≥ cj′(s).
Obviously, such a permutation always exists (for instance we sort the jobs by
non increasing completion time). In particular, π−1

s (1) is a job whose comple-
tion time is the makespan under s, i.e., C(s) = cπ−1

s (1)(s). Associate the vector

vs = 〈cπ−1

s (1)(s), cπ−1

s (2)(s), · · · , cπ−1

s (n)(s)〉 to every state s. In the following, vi
s

denotes the i-th coordinate of vs. Given two assignments s and r, we say that vr

is lexicographically smaller than vs iff v1
r < v1

s or there is an index i∗ > 1 such
that vi

r = vi
s for i ∈ {1, · · · , i∗ − 1} and vi∗

r < vi∗

s . We show by contradiction
that, if s is the lexicographically smallest assignment, then it is a strong equi-
librium. Let r be an assignment and J ⊆ J be a nonempty coalition such that
∀j ∈ J sj 6= rj and ∀j /∈ J sj = rj . Moreover, by construction of a coalition,
we must get: ∀j ∈ J cj(s) > cj(r). Let cmax = maxj∈J cj(s), that is cmax is the
maximum completion time of the jobs of the coalition J under state s. We prove
the following properties:

(i) For any j ∈ J such that cj(s) > cmax, cj(r) = cj(s).
(ii) For any j ∈ J , cj(r) < cmax.

(iii) If j ∈ J \ J and cj(s) = cmax, then cj(r) ≤ cmax.
(iv) For j ∈ J \ J with cj(s) < cmax, cj(r) < cmax.

For (i). Let j be a player such that cj(s) > cmax. Since cmax ≥ cp(s) for all
p ∈ J , we deduce that j ∈ J \ J and sj = rj . If at least one job of J , say
p, moves to machine sj then cp(s) ≤ cmax < cj(s) ≤ cp(r), contradiction with
cp(r) < cp(s). Then no job quit or moves to sj , the completion time on that
machine remains unchanged.

For (ii). If j ∈ J then cj(r) < cj(s) and cj(s) ≤ cmax.
For (iii). Since j ∈ J \ J , it is sj = rj . If no job of J moves to machine sj then
cj(r) ≤ cj(s) = cmax (the completion of sj cannot increase). If at least one job
of J , say p, moves to sj then cj(r) = cp(r) and cp(r) < cmax by item (ii).

For (iv). The proof is quite similar to item (iii). By definition we have sj = rj ,
i.e. j stays on machine sj . If no job of J moves to sj, then cj(r) ≤ cj(s) (the
completion of machine sj cannot increase). If at least one job of J , say p, moves
to sj then cj(r) = cp(r) and cp(r) < cmax by item (ii).

Items (i) to (iv) lead to |{i : ci(r) = cmax}| ≤ |{i : ci(s) = cmax}|. Moreover,
using item (ii), we deduce that |{i : ci(r) = cmax}| 6= |{i : ci(s) = cmax}|
since by construction there exists at least one job j ∈ J with cj(s) = cmax

(and cj(r) < cmax by item (ii)). Thus globally, items (i) to (iv) imply that vr

is lexicographically smaller than vs (contradiction with the minimality of vs)
because vi

r = vi
s when vi

r > cmax and |{i : vi
r = cmax}| < |{i : vi

s = cmax}|. ⊓⊔

13

Appendix B

Strong Price of Anarchy for 2 machines (Theorem 3)

We partition T in 3 groups TA, TB and TC each containing respectively types
only present on M1, types present on both M1 and M2, and types only present
on M2. Let TA =

∑

θ∈TA
w(θ), TB =

∑

θ∈TB
w(θ) and TC =

∑

θ∈TC
w(θ). We

partition J in 4 groups J1 = {j : tj ∈ TA}, J2 = {j : tj ∈ TB and sj = 1},
J3 = {j : tj ∈ TB and sj = 2} and J4 = {j : tj ∈ TC}. Let J1, J2, J3, J4 denote
the total loads of jobs on these sets respectively. W.l.o.g. assume C1(s) ≥ C2(s).
Then C2(s) ≤ OPT since otherwise all jobs would prefer the optimal assignment.
We study the cases J1 = ∅ and J2 6= ∅, J2 = ∅ and J1 6= ∅ or J1 6= ∅ and J2 6= ∅
(we know that J1 ∪ J2 6= ∅).

CASE 1: J1 = ∅ and J2 6= ∅. We have C1(s) = TB +J2 and C2(s) = TB +TC +
J3 + J4. We know that |J2| ≥ 2 (since otherwise C1(s) = OPT by inequality
(1b)). If |J2| ≥ 3 and x ∈ J2 is the job with the smallest processing length, then
3ℓx ≤ J2 ≤ C1(s). Because s is also a PNE, job x does not benefit by switching
to M2, thus C2(s) + ℓx ≥ C1(s). Then we deduce that 2

3C1(s) ≤ C2(s) ≤ OPT .

Now, assume |J2| < 3, that is J2 = {x, y}. As previously, we deduce that
C2(s) + ℓx ≥ C1(s) = TB + ℓx + ℓy (note that TB may contain one or two
types), which is equivalent to ℓy ≤ TC + J3 + J4. Because of this we have
OPT ≥ C2(s) = TB + TC + J3 + J4 ≥ TB + ℓy. On the other hand, using
inequality (1a), we get 2OPT ≥ TB + TC + J2 + J3 + J4. Combining these two
last inequalities, we deduce that 3OPT ≥ 2TB +TC +J2 +J3 +J4 + ℓy. Because
job y does not benefit by switching to machine M2, i.e., C2(s) + ℓy ≥ C1(s), we
deduce that 2TB + J2 + TC + J3 + J4 + ℓy = C1(s) + C2(s) + ℓy ≥ 2C1(s), which
is at most 3OPT .

CASE 2: J1 6= ∅ and J2 = ∅. We have C1(s) = TA + J1 and C2(s) = TC + J4.
Let x ∈ J1 with a type tx. Since s is a NE, we get that C1(s) ≤ C2(s)+w(tx)+ℓx.
Then 2C1(s) ≤ C1(s) + C2(s) + w(tx) + ℓx = TA + J1 + TC + J4 + w(tx) + ℓx,
which is at most 3OPT , because 2OPT ≥ TA + TC + J1 + J4 by (1a) and
OPT ≥ w(tx) + ℓx by (1b).

CASE 3: J1 6= ∅ and J2 6= ∅. The completion time on M1 and M2 are
respectively TA + TB + J1 + J2 and TB + TC + J3 + J4. Using inequality (1a),
we get 2OPT ≥ TA + TB + TC + J1 + J2 + J3 + J4. We consider the following
coalitional deviations:

– If all jobs of J1 that play M1 switch simultaneously to M2 then no job of J1

will benefit, because s is a strong equilibrium. This yields TA+TB +J1+J2 ≤
TB + TC + J3 + J4 + TA + J1, thus J2 ≤ TC + J3 + J4.

– If all jobs of J2 that play M1 switch simultaneously to M2 then no job of J2

will benefit, because s is a strong equilibrium. This yields TA+TB +J1+J2 ≤
TB + TC + J3 + J4 + J2, thus TA + J1 ≤ TC + J3 + J4.

14

We know that C2(s) ≤ OPT . This yields OPT ≥ TB + TC + J3 + J4. We are
ready to prove the upper bound:

2C(s) = 2(TA + TB + J1 + J2)

≤ 2TA + 2TB + 2J1 + J2 + TC + J3 + J4

≤ 2OPT + TA + TB + J1

≤ 2OPT + TB + TC + J3 + J4 ≤ 3OPT

The inequalities follow by the two cases of coalitional deviation, the lower bound
of 2OPT , and by the latter lower bound for OPT respectively. For the lower
bound of SPoA take 4 jobs with t1 = t2 = 1, t3 = t4 = 2 and ℓ1 = ℓ3 = 2,
ℓ2 = ℓ4 = 1. Let w(1) = w(2) = 1. If tasks 1 and 3 are on machine 1, tasks
2 and 4 on machine 2, then the state is a strong equilibrium with makespan
w1+w2+ℓ1+ℓ3 = 6. If tasks 1 and 2 is on machine 1, tasks 3 and 4 is on machine
2, then the state is a social optimum with makespan w1+ℓ1+ℓ2 = w2+ℓ3+ℓ4 = 4.

⊓⊔

A PNE that is not SE under a Type Ordering Mechanism

Take m = 3 machines and U = {θ1, θ2, θ3}. We give below the parameters
associated with types in U and jobs of the instance:

– w(θ1) = 0, 2 jobs of type θ1, j1, j2, of length 3 each.
– w(θ2) = 2, 2 jobs of type θ2, j3, j4, of length 0 each.
– w(θ3) = 3, 2 jobs of type θ3, j5, j6, of length 1 each.

We consider a mechanism that defines the following type orderings o(i) on the
machines i = 1, 2, 3:

– Machine 1: θ1 ≺o(1) θ2 ≺o(1) θ3

– Machine 2: θ2 ≺o(2) θ3 ≺o(2) θ1

– Machine 3: θ2 ≺o(3) θ3 ≺o(3) θ1

So o(2) = o(3). A PNE s is given by the following assignment:

– Machine 1: j1, j2 (completion times 6)
– Machine 2: j3, j5 (completion times 2, 6)
– Machine 3: j4, j6 (completion times 2, 6)

But such an assignment is not a SE, because all jobs except for j3, j4 have
incentive to jointly switch to the following assignment:

– Machine 1: j5, j6 (completion times 5)
– Machine 2: j3, j1 (completion times 2, 5)
– Machine 3: j4, j2 (completion times 2, 5)

15

